Nonlinear Bound States on Weakly Homogeneous Spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Bound States on Weakly Homogeneous Spaces

We prove the existence of ground state solutions for a class of nonlinear elliptic equations, arising in the production of standing wave solutions to an associated family of nonlinear Schrödinger equations. We examine two constrained minimization problems, which give rise to such solutions. One yields what we call Fλ-minimizers, the other energy minimizers. We produce such ground state solution...

متن کامل

On Complex Weakly Commutative Homogeneous Spaces

Let G be a complex algebraic group and L an algebraic subgroup of G. The quotient space G/L is called weakly commutative if a generic orbit of the action G : T ∗(G/L) is a coisotropic submanifold. We classify weakly commutative homogeneous spaces N L/L in the case where L is a reductive group and the natural representation L : n/[n, n], where n is the tangent algebra of the group N , is

متن کامل

Bound states in weakly disordered spin ladders

We study the appearance of bound states in the spin gap of spin-1/2 ladders induced by weak bond disorder. Starting from the strong-coupling limit, i.e., the limit of weakly coupled dimers, we perform a projection on the single-triplet subspace and derive the position of bound states for the single impurity problem of one modified coupling as well as for small impurity clusters. The case of a f...

متن کامل

A Perturbative Expansion for Weakly Bound States ∗

We describe a perturbation expansion for the energy and wave function of a weakly bound particle in a short-range potential in one space dimension. ∗Research supported in part by the National Science Foundation under Grant #PHY-9218167.

متن کامل

Localization operators on homogeneous spaces

Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Partial Differential Equations

سال: 2013

ISSN: 0360-5302,1532-4133

DOI: 10.1080/03605302.2013.845044